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Abstract: Visual representation learning hold great promise for robotics, but is
severely hampered by the scarcity and homogeneity of robotics datasets. Recent
works address this problem by pre-training visual representations on large-scale
but out-of-domain data (e.g., videos of egocentric interactions) and then transfer-
ring them to target robotics tasks. While the field is heavily focused on developing
better pre-training algorithms, we find that dataset choice is just as important to
this paradigm’s success. After all, the representation can only learn the structures
or priors present in the pre-training dataset. To this end, we flip the focus on algo-
rithms, and instead conduct a dataset centric analysis of robotic pre-training. Our
findings call into question some common wisdom in the field. We observe that
traditional vision datasets (like ImageNet, Kinetics and 100 Days of Hands) are
surprisingly competitive options for visuo-motor representation learning, and that
the pre-training dataset’s image distribution matters more than its size. Finally, we
show that common simulation benchmarks are not a reliable proxy for real world
performance and that simple regularization strategies can dramatically improve
real world policy learning.
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1 Introduction

?
What Data Should Robots

Be Pre-Trained On?

Figure 1: Due to the scarcity of di-
verse, large-scale robotic data, visuo-
motor representations – which are nec-
essary to solve tasks (e.g., put bread
in toaster) from visual inputs – must
be learned from external datasets [1].
But which datasets contain the best pri-
ors for robotics? Surprisingly, we find
that simply pre-training on standard vi-
sion datasets (e.g., ImageNet) can out-
perform SOTA baseline representations
from the robot learning community, de-
spite using roughly 5x less data.

Consider a robot that must perform a manipulation task in
an unstructured environment: e.g., toasting a bread slice.
To accomplish this, the robot must locate the target ob-
jects (bread, toaster, etc.) in the scene and reason about
their physical properties (e.g., Center-of-Mass, etc.), us-
ing RGB camera inputs. However, the real world has
innumerable objects, lightning conditions, and environ-
ments that a robot may run into. This incredible range of
scenarios makes hand-engineering a vision pipeline im-
possible. Thankfully, the computer vision and representa-
tion learning communities have highlighted a successful
paradigm to overcome this challenge: learn end-to-end
neural representations directly from data [2, 3], which can
then be used for downstream vision tasks. We seek to do
the same for policy learning.

But what data should these representations be trained on?
In an ideal world, we would leverage task-specific robotic
data (i.e., trajectories) to jointly learn a visual representa-
tion and a controller, using end-to-end reinforcement or
imitation learning [4, 5, 6, 7]. Unfortunately, learning vi-
sual representations in conjunction with action policies is
frequently intractable [8, 9] or requires a large amount of
data, that may be too expensive to collect on real hard-
ware. Furthermore, the homogeneity of robotics data
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(collected in single lab) hinders generalization to novel scenarios, which is the motivation for learn-
ing in the first place! To overcome this, the field has trended towards pre-training visual represen-
tations on large-scale, unlabeled vision datasets, using self-supervised learning algorithms – e.g.,
Masked Auto-Encoders [10] (MAEs), contrastive learning [11, 12, 13], etc. These pre-trained rep-
resentations decouple policy learning from perception, allowing us to learn behaviors with far less
robotic data [1, 14, 15, 16, 17].

The key insight is that self-supervised visual pre-training can learn useful priors from out-of-domain
data that will be useful for robotics. Recent work in robot manipulation [14, 1, 18, 15] has investi-
gated different neural architectures and algorithms for learning these priors. However, there is one
important commonality – all these methods train (primarily) on the same dataset, Ego4D [19]. In-
deed, this seems like an intuitive choice, because: (1) Ego4D contains first-person camera views,
which are analogous to the robot’s camera; (2) Ego4D focuses on human-object interaction – i.e., it
is aligned with the downstream manipulation task; and (3) the dataset offers thousands of hours of
video frames to train on. But is this intuitive bias empirically tested?

In this paper, we empirically investigate these research questions from the perspective of robotic
manipulation tasks. Specifically, we pre-train a total of 15 representations on various datasets using
MAEs [10], a state-of-the-art (SOTA) self-supervised learning algorithm. We then fine-tune each of
these representations to solve various manipulation tasks in simulated and real settings via Behavior
Cloning (w/ ≤ 50 demonstrations). Our experiments reveal that many intuitive biases and common
assumptions in our field need to be revisited. Surprisingly, we find that standard image datasets
based on curated internet data (e.g., ImageNet [2], Kinetics [20], 100 Days of Hands [21]) can learn
stronger visuo-motor representations than egocentric human interaction data (of Ego4D)! In fact,
pre-training on the ImageNet compares favorably against SOTA (visuo-motor) baseline representa-
tions, which were trained on far more data (e.g. MVP [22] was trained on 2M+ frames) using the
exact same algorithm and hyperparameters. This leads us to an importance insight – the pre-training
image distribution is far more crucial for effective representation learning than naively increasing
the number of images to train on. Building on this, we investigate various schemes for scaling
pre-training dataset size while creating a broader image distribution. Our best model improves per-
formance by 30% (v.s. SOTA baselines [15, 22]) on real world robotics tasks and is the direct result
of this search. Finally, we show how simple implementation details (like using dropout [23] during
evaluation) can have a significant impact on policy performance, and how these trends are poorly
captured in simulation studies. Our project code and models are released publicly, and we encourage
the reader to view our website for added context3.

2 Related Works
Learning Actionable Representations The robotics field has long focused on learning actionable
representations, which focus on task relevant details and are maximally predictive of the actions
the robot should take. These representations can be learned end-to-end as part of policy learning,
using data collected by expert demonstrations (e.g., Imitation Learning [24]) or the robot itself (e.g.,
Reinforcement Learning [4]). This paradigm has been successfully applied to a wide range of tasks
like in-the-wild grasping [25], bin-picking [26, 27, 28], insertion [5], pick-place [29], and even
self-driving [30, 31, 8]. Prior work also added tertiary optimization objectives (e.g. observation
reconstruction [32], inverse modeling [33], dynamics modeling [34], etc.) on top of policy learning,
in order to make representation learning more efficient. However, all of these techniques share the
same flaw: they require a wealth of task-specific robotic data for learning representations.

Self-Supervised Visual Pre-Training Thus, the robotics community has trended towards pre-
training representations on out-of-domain, vision datasets, (which are both larger and more diverse)
and transferring them to robotics tasks. Prior works [1, 18, 22, 14, 15] all seem to follow a common
formula: representations are trained using SOTA self-supervised vision algorithms (e.g., contrastive
learning [11, 13, 12], masked image modeling [10, 35], etc.) on frames (primarily) sampled from the
Ego4D dataset [19]. These representations are then evaluated mostly in sim [36], using a common
policy learning framework [1, 15]. These choices may seem reasonable (see Sec. 1), but there is
surprisingly little evidence backing them. Importantly, R3M [1] and MVP [14] compared only
with supervised ImageNet representations but not apples-to-apples with self-supervised ImageNet
representations [10]. Our investigation fills in these critical gaps. We find that representations

3https://data4robotics.github.io
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Figure 2: Our investigation considers 5 standard datasets from both the computer vision and robotics:
ImageNet [2], 100 Days of Hands [21] (DoH), Ego4D [19], Kinetics [20], and RoboNet [37] (left).
For each dataset, we pre-train a visual representation on it using the Masked Auto-Encoders (MAE)
algorithm [10]. This masked image modeling method works by randomly masking patches in the
image, and training an encoder/decoder to reconstruct them (center). Once pre-training is concluded,
we fine-tune the representation to various robotics tasks, both in sim and in the real world (right).

learned on standard image datasets (like ImageNet) are surprisingly applicable to the robotics space,
and that common evaluation/experimental techniques can give a misleading sense of progress.

3 Experimental Methods
Our investigation follows a simple formula (see Fig. 2). Step 1: We pre-train visual representations
on various datasets using the same self-supervised algorithm (masked image modeling). Step 2:
We fine-tune each representation for downstream manipulation tasks in both simulated and real
(via behavior cloning). For evaluation of representation quality, we rate based on performance on
downstream tasks, with emphasis on performance in the real world.

Visual Pre-Training This project requires a scalable representation learning algorithm that can
seamlessly operate on heterogeneous data sources, with the highest possible performance. We chose
to use Masked Auto-Encoders (MAEs), a self-supervised representation learning algorithm with
SOTA performance on various vision [10, 35, 38, 39, 40, 41, 42], multimodal [43, 44], and robotics
tasks [15, 22]. The MAE encoder (E) is a Vision Transformer (ViT) network [45] that produces an
embedding vector to represent an input image I: i.e. E(I) ∈ R768. During training E is tasked
to represent I , using only 25% random patches sampled from the image. Then a decoder network
(D) attempts to reconstruct I in its entirety (see Fig. 1, middle). Both E and D are trained end-to-
end, minimizing the MSE reconstruction objective: ||D(E(I)) − I||2. During training, the visual
encoder learns to reason spatially: i.e., it learns how patches relate to each other, and how they can
come together to form the final image. Thus, E learns a highly efficient image descriptor that can be
transferred to downstream tasks without any algorithmic changes (e.g. no masking needed during
transfer). The MAE hyperparameters are described in Appendix A. Note that they are directly copied
from the original MAE work by He et al. [10] and shared by prior works in robot learning [15, 22].

Fine-Tuning w/ Behavior Cloning Pre-trained visual representations are fine-tuned to solve
downstream tasks of robotic manipulation. To this end, we adopt the paradigm of Learning from
Demonstration (LfD) [46, 47, 24, 48, 49, 50]. Our goal is to learn a policy π that uses the given
observation ot to predict an optimal action distribution for the task: at ∼ π(·|ot). Note that the
actions at are commands sent to the robot controller, while the observations consist of the current
image and robot joint information: ot = [it, jt]. The policy π must be learned given a set of expert
demonstrations (D = {τ1, . . . , τn}), where each demonstration τi = [(o0, a0), . . . , (oT , aT )] is a
trajectory with optimal observation-action tuples (i.e. collected by a proficient agent).
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π is parameterized using a 2-layer network (p), built atop the pre-trained encoder E. The forward
pass works as follows: first, the observation image is encoded E(it); then jt is concatenated to the
encoding and passed to the policy network – p(E(it), jt). p predicts a policy distribution, which
in our case is a Gaussian Mixture Model [51, 52]. During test time, actions are sampled from this
distribution and then executed on the robot. The entire policy network (both p and E) is fine-tuned
end-to-end (using Adam [53] for 50K iterations) to maximize the log probability of actions from the
expert demonstrations: minπ −log(π(at|E(it), jt)). This procedure was designed to closely match
prior work with two important modifications: we apply dropout to the policy network p, and we
apply data augmentation to it before passing it to the encoder. Both of these deviations are validated
in our experiments (see Sec. 5). Please refer to Appendix B for the exact hyperparameters.

Evaluation Procedure To evaluate a representation, we apply the above fine-tuning stack sepa-
rately on 13 sim tasks and 3 real tasks. Each policy’s final checkpoint is evaluated on N test rollouts
for every task, with novel initializations (e.g., test objects, new initial positions, etc.). All evaluation
hyperparameters (e.g., demonstration set, number of test-time rollouts, initial positions, test objects,
BC hyperparameters, etc.) are kept fixed within a task. This allows for maximally fair evaluation.

Simulation Tasks: Our simulated tasks set spans a set of 3 MuJoCo [36] environments – Meta-
World [54], RoboSuite [51], Franka Kitchen [55] – that are frequently used by the robot learning
community, and the exact setups (e.g., task rewards/success criteria, camera positioning, object sets,
demonstration trajectories, etc.) were directly taken from prior work [15, 1, 51] (fully documented
in Appendix C). As a result, our simulated results should be very accessible to the community.

Real World Tasks: While simulation is a useful tool, there is a significant sim2real gap in ma-
nipulation. Thus, we designed 3 distinct tasks for real world validation on a Franka Panda Robot
(visualized in Fig. 2).
(1) Block Stacking requires the robot to pick up the red block and place it on the green block. This
is the simplest of three tasks as the robot only has to adapt to new object configurations during test
time. However, the robot still needs to precisely localize and grasp the (small) red block.
(2) Pouring requires the robot to lift the cup and pour almonds in the target bowl. At test time,
the cup and target bowls are both novel objects (unseen during training), and are placed in random
positions, requiring the robot to generalize to new visual inputs.
(3) Toasting is our most challenging task, and it requires the robot to pick up the object, place it
in the toaster, and then shut the toaster. At test time, we use a novel object and randomize both
the object’s initial pose and the toaster’s initial orientation. Toasting requires the robot to execute a
multi-stage manipulation strategy, while also generalizing to new visual scenarios.
Each of the three tasks use a shared action space: Cartesian velocity control; and a shared ob-
servation space: proprioceptive inputs and 3rd person camera view (visualized in Fig. 3, left).
We collect n = 50 tele-op demonstrations per task. Please refer to Appendix C for all other task
hyperparameters and our website for task videos: https://data4robotics.github.io.

4 Probing Dataset Biases
In our empirical study, we evaluate 5 widely-used datasets as pre-training candidates (see
Fig. 2, left): ImageNet [2], Ego4D [19], 100 Days of Hands [21] (DoH), Kinetics [20], and
RoboNet [37] (see Sec. 4.1 for descriptions). We apply our experimental methodology (from Sec. 3)
on various sub-samplings/combinations of these datasets. First, we conduct single dataset pre-
training: i.e., we evaluate a dataset’s performance in isolation to empirically determine which is
most suited for our diverse downstream manipulation tasks (Sec. 4.1). In our second suite of ex-
periments, we analyze how well various combinations of the data perform (Sec. 4.2). Finally, we
investigate dataset scaling for pre-training, and find that the pre-training image distributions matter
most (Sec. 4.3).

4.1 Comparing Datasets Apples-to-Apples

Before diving into the details, let’s take a step back and add context about the datasets we probe.
(1) ImageNet (ImageNet-1K) contains 1000 train images for each of its 1000 classes. ImageNet
is a popular and classical computer vision dataset, i.e., curated carefully from internet images. The
broad image distribution may result in more expressive representations (as observed in purely visual
tasks like classification). However, ImageNet is focus on centered, single-object, and high-quality
internet images. As a result of this domain gap, many believe that ImageNet is an ill fit for robotics.
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4 Frames Sampled Randomly from ImageNet-1M

4 Frames Sampled Randomly from Ego4D-1M

Observations from Train Demo (Pouring Task)

Robot Observations vs Pre-Train Image Distributions

Figure 3: Observations from our pouring task (left) are compared against random pre-training im-
ages from ImageNet-1M/Ego4D-1M (right). Note that all the pre-train images are very different
from the evaluation task. Nonetheless, the curated, single-object images from ImageNet-1M yield
stronger visuo-motor representations than the Ego4D-1M frames do (see Table 1).

Single Dataset Models (1M Images) Baselines
Task ImageNet Ego4D Kinetics 100 DoH RoboNet Scratch VC-1 [15] MVP [22]

Si
m

RoboSuite [51] 62% 61% 65% 52% 58% 2% 63% 51%
MetaWorld [54] 90% 93% 87% 86% 74% 72% 70% 83%

Franka Kitchen [55] 63% 68% 55% 62% 62% 40% 61% 61%
Average (Sim) 72% 74% 69% 67% 65% 38% 65% 65%

R
ea

l

Block Stacking 68%± 9.5% 64%± 9.5% 72%± 9.8% 55%± 9.2% 76%± 8.7% 0%± 0% 60%± 10% 52%± 10%
Pouring 44%± 12% 19%± 9.0% 50%± 9.0% 19%± 12% 13%± 7.6% 0%± 0% 25%± 10% 13%± 7.6%
Toasting 10%± 16% 0%± 0% 10%± 16% 40%± 17% 0%± 0% 0%± 0% 10%± 10% 10%± 10%

Average (Real) 41%± 7.1% 28%± 6.9% 44%± 7.1% 38%± 6.9% 30%± 7.0% 0%± 0% 33%± 6.9% 25%± 6.6%

Table 1: Comparing Datasets Apples-to-Apples. We compare pretrained representations, learned
on 1M images from five datasets. We report success rates after finetuning representations with
BC, and the real world evaluations also include standard error (i.e., Success% ± Std. Err.%). For
additional context, we benchmark SOTA baselines [15, 22] and a “Scratch” representation with no
pretaining. We find that visual representations learned on standard vision datasets with internet
images and curation (e.g., ImageNet) provide surprisingly strong performance in the real world.

(2) Ego4D is a modern, ego-centric, and in-the-wild video dataset, with 3.6K hrs of video collected
by humans performing daily tasks. It is conjectured that Ego4D is well suited for robot learning as
it contains realistic images that a robot may observe in real-world environments. However, frames
collected within the same video tend to look similar to each other, and the lack of curation mean that
some object classes (e.g. blocks, cups, etc.) rarely appear.
(3) DoH is focussed on human hands and contains curated YouTube videos of people manipulating
various household objects (e.g. in cooking video). The curation ensures that action classes are
balanced and that videos look distinct from each other. Furthermore, the focus on manipulation may
help the representations pick useful cues (e.g. where objects can be grasped). However, YouTube
videos look quite different from robot’s visual observations, so its an open question if priors learned
from DoH would benefit downstream tasks in robotics.
(4) Kinetics(-700) is similar to DoH in that it’s curated from YouTube, but its videos contain a much
wider distribution of human actions (e.g. with objects and/or other humans) instead of the focus of
DoH on hands and manipulation.
(5) RoboNet contains 13M+ image observations of robots randomly interacting with objects placed
in a bin in front of them. RoboNet could be invaluable for pre-training, since its images are highly
domain-specific for our use case. But robot data is collected in sterile lab setting, which could cause
the representations to overfit to only those specific settings.

It is clear that these five datasets have complex trade-offs that may affect their usability for robotics.
However, none of them clearly match the robot observation space (see Fig. 3). The only way to settle
the question is to undertake an unbiased and empirical study, comparing them apples-to-apples.
Thus, we apply our evaluation methodology to 1 Million frames sampled randomly from every
dataset. This is easy to do in ImageNet, since it has 1M balanced train images. But for the video
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Soup-1M + 1M Extra Frames (2M Total)
Task Soup-1M Soup 2M ImageNet Ego4D Kinetics 100 DoH RoboNet

Si
m

RoboSuite [51] 64 64 52 53 59 67 58
MetaWorld [54] 87 89 92 86 87 92 88

Franka Kitchen [55] 66 67 56 61 64 62 60
Average (Sim) 72 73 67 67 70 74 69

R
ea

l

Block Stacking 76%± 8.7% 44%± 10% 72%± 9.2% 60%± 10% 76%± 8.7% 92%± 5.5% 76%± 8.7%
Pouring 38%± 13% 38± 13% 32%± 12% 38%± 13% 32%± 12% 38%± 13% 32%± 12%
Toasting 10%± 10% 40%± 16% 0%± 0% 10%± 10% 22%± 13% 50%± 17% 0%± 0%

Average (Real) 41%± 7.1% 41%± 7.0% 35%± 7.1% 36%± 7.1% 43%± 7.1% 60%± 6.7% 36%± 7.1%

Table 2: Marginal Value of Each Dataset. Soup-{1M,2M} models are trained {1M,2M} images
with {200K,400K} images from each of the five target datasets. The models on the right are trained
with the Soup 1M images and an additional 1M frames from the target dataset. We find that image
distribution matters more than the number of images trained on: Soup-2M does not improve on
Soup-1M, but Soup-1M + 1M DoH does. Results are reported as success rates for each task, and the
real world evaluations also report standard error (i.e., Success%± Std. Err.%).

datasets (Ego4D/Kinetics/DoH), we first processed them into frames (sub-sampled at 3FPS) and
then randomly select 1M images from the whole set. For RoboNet, we followed a similar procedure
as used for the video datasets, but randomly sampled 1M image observations instead. Visual pre-
training on each of these results in 5 representations that we evaluate on our task suite (via BC). For
additional context, we also evaluate a ‘Scratch’ model with no pre-training, i.e., randomly initialized
weights before BC. We also evaluate pre-trained weights downloaded from two SOTA baselines
(VC-1 [15], MVP [22]). Note that both MVP and VC-1 share our vision transformer architecture
and pre-training recipe of masked image modeling, but were trained on significantly more # of
frames (2.5M+), sampled primarily from Ego4D. The results are presented in Table 1.

Our first observation is that performance trends from popular simulation benchmarks do not transfer
to the real world at all (see Sec. 5 for more). Thus, we focus the rest of our analysis on the real
world trends, since that is the primary focus of this work. The real robot experiments reveal that Im-
ageNet/Kinetics/DoH representations all perform better than those trained on RoboNet/Ego4D
(roughly 40% v.s. 30% success rate). Critically, this result goes beyond just MAE pre-training. As
we show in Appendix D, our finding that ImageNet/Kinetics/DoH performs best also holds with
contrastive pre-training [13]! This is surprising and important since both Ego4D and RoboNet
seem like better matches to the downstream tasks (e.g., RoboNet entirely contains images of robot
interactions) and as more works in the research community implicitly assume/expect Ego4D to do
better. Note that ImageNet/Kinetics/DoH were all sampled and curated from the internet (using
YouTube/image search), so they contain cleaner images with a much greater range of content (e.g.,
1000 classes [2] vs 4 robot labs [37]). These unbiased, empirical results strongly suggest that the
pre-training image distribution is far more important than the images’ content.

4.2 Combining Data from Different Sources

Another surprising result from Table 1 is that the baselines representations perform worse than the
ImageNet/Kinetics/DoH representations, despite being trained on significantly more images. For
example, VC-1 pre-trains on ImageNet alongside 2.5M+ images from Ego4D, while using the exact
same pre-training strategy that we do. A possible explanation for this discrepancy is that VC-1’s
representation is functionally very similar to our only-Ego4D ablation, since the majority of its pre-
training frames come from Ego4D. Consequently, each batch the encoder sees during pre-training
primarily consists of Ego4D frames. The key insight here is that distribution of the pre-training set
matters more than the sheer number of frames trained on. We experimentally test this hypothesis,
and find that VC-1’s representation performs only marginally better than Ego4D’s (33% vs 28%).

The natural next question is, “How does one optimally combine datasets for visuo-motor pre-
training?” A simple idea is to proportionally mix the datasets so that the model is pre-trained on an
equal number of frames from each dataset. Particularly, we create a “Soup-1M” containing 200K
images randomly sampled from each of the 5 datasets. We then evaluate this model on our test suite
(see Table 2, left). Note that the Soup-1M model performs about the same as the ImageNet/Kinetic-
s/DoH models (41%), even though it was trained on a significant amount of Ego4D/RoboNet frames
(recall, these performed lowest in Sec. 4.1). This suggests that scaling to multiple datasets can
increase robustness, so long as the datasets are kept carefully balanced during pre-training.
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4.3 Analyzing the Marginal Value of Each Dataset

Soup-1M provides a sensible first step for combining datasets for visuo-motor pre-training – keep-
ing training set size to 1M using equal proportions of data sources. This leads to the natural next
question: “how can we effectively scale dataset size to improve performance?” To answer this ques-
tion, we’ll also need to understand the marginal value of adding additional data to the soup. To
answer this, we undertake another empirical study. Particularly, we obtain visual representations
on pre-training sets containing the aforementioned Soup-1M along with 1M images from each of
the five subject datasets (e.g. Soup-1M + 1M ImageNet frames). In effect, this both scales the size
of pre-training dataset, while shifting the train distribution towards that of the subject dataset. For
fair comparison, we also train a Soup-2M model (identical to Soup-1M but with 400K images per
dataset) that tests a naive scaling of the Soup-1M model. All six models are evaluated and results
are present in Table 2.

As reported in Table 2 (left), we find that Soup-2M model performs marginally better in simulation
than Soup-1M, and performs exactly the same (on average) in the real world. That is, data scal-
ing is more nuanced than naively increasing the number of frames. In contrast, the strongest
model, Soup-1M + 1M DoH, is able to perform 20% better than Soup-1M (and 30% better than the
strongest baseline) on the real world tasks (bold results in Table 2)! Finally, the Soup-1M + 1M
{Ego4D/ImageNet/RoboNet} models perform slightly worse than Soup-1M, whereas the Soup-1M
+ 1M Kinetics model performs slightly better. These results are mostly in line with our expectations
from Sec. 4.1 (e.g. adding more RoboNet data reduces performance, while adding more Kinetics/-
DoH increases performance).

5 Ablating our Experimental Setup

This section presents some insights from our real-world experiments. We find: (1) that old-school
dropout regularization is highly effective; and (2) sim evaluation does not transfer to real world.

Regularizing Policies w/ Dropout Early in our physical robot evaluations, we noticed that the
policies often produced jerky motions that could damage the robot and its environment. Thus, we
searched for a simple fix that could improve robustness in the real world. We found that adding
dropout [23] to the policy network (w/ p = 0.2) significantly improved the robot’s qualitative be-
havior: the commanded motions became smoother, with improved generalization to new scenarios.
We quantify this with ablations on the Block Stacking task, i.e., fine-tuning the five 1M models (see
Sec. 4.1) with and without dropout. Note how adding dropout to visuo-motor policies almost
consistently improves policy performance on the physical robot (see Fig. 4, orange bars). How-
ever, the opposite effect is observed in simulation. This indicates that adopting sim benchmarks as
a (fast) proxy to make policy design choices may warrant caution and a healthy doze of skepticism.

We further test the regularization effect of dropout in this setting using a new task: Block Stacking
Robust. In this task, a human adversary pushes the cube out of the robot’s gripper in the middle
of the episode (i.e. right before the robot grasps). This forces the robot to dynamically replan its
actions, and adapt to a scenario it never saw during fine-tuning with BC (in the demonstrations).
We find that the success rate on Block Stacking Robust (average across all models) increases to 24%
from 10% thanks to this regularization.

Analyzing Sim-to-Real Transfer On one hand the sim2real gap in manipulation is well known
and on the other it’s still very common practice in prior work [1, 15, 22, 18, 56] to draw infer-
ences about pre-trained representations using simulated benchmarks (e.g. CortexBench [15], Franka
Kitchen [55], Isaac Gym [22], etc.) In several unbiased experiments we undertook, we have found
that trends in simulation are almost entirely disconnected from their real world performance. First,
the simulation suite predicts that Ego4D is the best representation for robotics, but the real world
results consistently disagree with that assessment (see Table 1). Second, key implementation details
in the real world (like Dropout) can actually hurt performance in simulation (see how Dropout hurts
sim performance in Fig. 4). To objectively investigate this, we plot the sim performance vs real
performance for all our models (trained on dataset configurations detailed in Sec. 4) in Fig. 5. We
find that sim and real performance are almost entirely uncorrelated (a very low R2 = 32%).
Even if we were to ‘cherry-pick’ the two most similar sim/real tasks (RoboMimic’s block-lift [51]
vs our stacking task) the correlation is still very low: R2 = 34%.
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6 Discussion
In this paper, we investigated how dataset biases and implementation choices can affect visual pre-
training for robotics. With the modus operandi of masked image modeling [10], our experiments
analyzed pre-trained visuo-motor representations trained on 15 different data distributions, sourced
from 5 common computer vision and robotics datasets. These models were evaluated on standard
sim environments, alongside 3 unique and challenging real world tasks (each with 50+ robot eval-
uations, for rigor). We find that traditional computer vision datasets (e.g. ImageNet) provide sur-
prisingly strong performance for robotic pre-training. In fact, our simple ImageNet representations
outperform both Ego4D representations and representative baselines in the field. The key insight is
that the image distribution matters much more than the sheer number of images during pre-training.
Guided by this insight, we explore various strategies for scaling data distribution, by carefully mix-
ing data from different sources. As part of this investigation, we train a final model (Soup-1M +
1M DoH) that exhibits a 30% improvement over the baselines on real world robotic tasks. Finally,
we analyze our experimental methodology, and show how simple regularization techniques (e.g.
dropout [23]) can boost real world performance, and conclude that trends in simulation do not cor-
relate to real world deployment. We hope that our unbiased empirical probes and associated findings
will inspire others in the field to study how various sources of offline data can transfer to robotics
tasks. To enable future efforts, we released all of our pre-trained representations and evaluation code
on our website4.

Limitations and Future Work While our experiments were extensive, there are some limitations
that should be addressed by future work. First, there is no simple theory or experimental test that
can predict if a representation will actually work well on the robot after pre-training. In fact, our
experiments show that the easiest evaluation technique, i.e. the proxy of simulation, may give a
misleading sense of progress in the real world! Thus, it is vital for our community to find faster
ways to evaluate representations, and share reproducible results. One possibility is a standardized
cloud robotics benchmark [57, 58] that could greatly reduce the load for researchers. Next, our
experiments heavily focused on Behavior Cloning combined with MAE pre-training (though we did
explore SimCLR pre-training in Appendix D). Finally, it would be valuable to extend our study in
more scenarios (e.g., Reinforcement Learning), and on other robotic tasks, like visual navigation
and grasping.

4https://data4robotics.github.io
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Hyperparameter Value
MAE Pretraining

optimizer AdamW [53]
base learning rate 1e-4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.95
batch size 4096
learning rate schedule cosine decay
total batches or iterations 249600
warmup iterations 1/8 × total iterations
augmentation RandomResizedCrop
#GPU 64 V100 (32 gb)
Wall-clock time ∼36 hours

Encoder ViT Architecture
#layers 12
#MHSA heads 12
hidden dim 768
class token yes
positional encoding sin cos

Decoder ViT Architecture
#layers 8
#MHSA heads 16
hidden dim 512
class token used yes
positional encoding sin cos

Table 3: Training and architectural hyperparameters for MAE pretraining.

A MAE Hyperparameters
We list key hyperparameters for the MAE training loop in Table 3. Note that these parameters
were employed directly from original MAE paper [10] and are actually shared by relevant robotics
baselines [15, 22]. Consistent with the terminology in [10], the employed learning rate is the base
learning rate scaled by (total batch size / 256). For a head-on comparison with prior work [10,
15], we train the ViT for iterations equivalent of 800 epochs over ImageNet dataset. This rigorous
benchmarking took # GPUs×wall clock time×# data ablations = 64×1.5×12 = 1152 GPU days.

B BC Hyperparameters
The following section describes the hyperparameters used in our behavior cloning loop. As dis-
cussed in Sec. 3, the BC policy begins by taking in the image and passing it through the pre-trained
encoder to get a representation, E(it). That representation is then concatenated to the joint in-
formation to get a policy input, xt = [E(it), jt]. The policy input is fed through a 2-layer mlp
network, with a batchnorm preceding the first layer, ReLU activations [3], and hidden dimensions
of [512, 512]. Additionally, we add dropout [23] to the two mlp layers w/ probability p = 0.2 after
the ReLU activations. The result of the top layer is then passed to 2 linear layers, that predict the
mean (µ), mixing parameters (φ), and standard deviation (σ) of a Gaussian Mixture Model (GMM)
distribution w/ m modes:

p(x) = Σmi=1φiN(x|µi, σi)

The choice of GMM was based on prior work [51, 52] that showed it could dramatically improve
performance. After some tuning, we used m = 5 on the RoboSuite tasks (note their benchmark [51]
used m = 5) and the real world tasks, since it worked best. However, for Franka Kitchen and
MetaWorld, we found no significant difference. As a result, we used m = 1 (i.e. standard Gaussian
distribution) for those tasks to maximize comparability with prior benchmarks [15, 55].
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The policy was optimized for 50000 iterations using the ADAM optimizer [53], with a learning rate
of 0.0001 and a L2 weight decay of 0.0001. In addition, we applied data augmentation (random
crops and random blur) to the input image it, before passing it E. This was based on recommenda-
tions for best practices from Hansen et. al. [56]. The full code for this setup is open-sourced on our
website: https://data4robotics.github.io.

C Task Hyperparameters
This section describes the hyperparameters made while setting up both sim and real world tasks. All
code (for robot/sim environments and BC training) is open sourced: https://data4robotics.github.io.

Simulation We evaluate on 5 tasks from Metaworld [54] (BinPick, ButtonPress, Hammering,
Drawer Opening, and Assembly), 5 tasks from Franka Kitchen [55] (Knob Turning, Door Opening,
Light Switch, Microwave, and Sliding Door), and 3 tasks from RoboSuite [62, 51] (Lift, Can, and
Square). These environments are frequently used by the robot learning community, and the exact
setups (e.g., camera positioning, object sets, demonstration trajectories, etc.) were directly taken
from prior work [15, 1, 51]. As a result, our simulated results should be very accessible to the
community.

The training demonstrations for these tasks were collected by previous work (CortexBench [15],
Relay Policy Learning [55], RoboMimic [51] respectively). We fine-tune on n = 25 demos for
MetaWorld/Franka Kitchen, and n = 200 demos on RoboSuite (again to stay consistent with older
papers). Task success is measured by the environments themselves, and we get numbers by estimat-
ing success rates empirically using 50 test trajectories. Note that we only evaluate the policy at the
end of training (unlike some prior work that evaluated multiple times over the course of training).
This was done to ensure the sim evaluation setup matched the real world (i.e. we can’t evaluate real
policies multiple times during training).

Real World As discussed in Sec. 3, our real world tasks were built using a Franka Panda robot,
and we collected 50 demonstrations for each task using a VR tele-op setup. We heavily encourage
the reader to get a feel for the training data and tasks by viewing the supplemental video on our
website: https://data4robotics.github.io.

The following section expands on our real world task descriptions from Sec. 3, and provides some
additional details:

• Block stacking requires the robot to pick up the red block and place it on the green block.
This is the simplest task, since the robot only has to adapt to new object configurations
during test time, but it still requires the robot to precisely localize and grasp the (small) red
block.
We evaluated agents on this task using 25 test positions for the red/green block. These test
positions were kept fixed for all policies to ensure maximum reproducibility.

• Pouring requires the robot to lift the cup and pour almonds in the target bowl. During
test time the cup and target bowls are both novel objects (unseen during training), and are
placed in random locations. Thus, this task forces the robot to generalize to new visual
inputs.
We evaluated 3 separate cup/target bowl pairs in 5 positions each (so 15 trials total). Note
that none of these objects or positions were seen during test time. Again, the object and
position combinations were kept fixed across every model tested.

• Toasting is the final task, and it requires the robot to pick up the object, place it in the
toaster, and then shut the toaster. During test time, we use a novel object and randomize
both the object’s initial pose and the toaster’s initial orientation. This is the most difficult
task, since it requires the robot to execute a multi-stage manipulation strategy, while also
generalizing to new visual scenarios.
We evaluated 2 target objects pairs and randomized the toaster orientation into 5 separate
poses (so 10 trials total). Note that none of these objects or toaster orientations were seen
during test time. As before, all the test conditions were shared across all policies.
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Single Dataset Models (1M Images) Baselines
Task ImageNet Ego4D Kinetics 100 DoH RoboNet R3M [1]

R
ea

l

Block Stacking 60%± 10% 52%± 10% 60%± 10% 76%± 8.7% 56%± 10% 4%± 4%
Pouring 25%± 11% 13%± 8.8% 22%± 11% 25%± 12% 6%± 6% 19%± 10%
Toasting 10%± 10% 10%± 10% 10%± 10% 30%± 10% 0%± 0% 0%± 0%

Average (Real) 32%± 6.9% 25%± 6.6% 31%± 6.9% 44%± 7.1% 21%± 6.5% 8%± 3.8%

Table 4: This table analyzes if Table 1’s conclusions apply to different pre-training schemes, or if
they are limited to MAE [10]. Specifically, we apply a contrastive visual pre-training algorithm
(SimCLR [13]) to 1M images from each of the target datasets. We also add an additional baseline
– R3M [1] – that was trained using temporal contrastive learning on Ego4D clips. We evalaute
these representations on our 3 real world tasks, and report results as success rates for each task w/
standard error (i.e., Success% ± Std. Err.%). This experiment reveals that the trends do generalize
to different pre-training schemes (e.g., vision datasets still stronger than Ego4D), and that the MAE
representations are stronger on average.

D Replication with SimCLR
Our results from Sec. 4.1 raise questions about several key assumptions in the field. For example,
we find that visuo-motor representations learned on the classic ImageNet [2] dataset are stronger
than those learned on Ego4D [19] (in-the-wild data) and RoboNet [37] (random robot interactions).
But are these trends fundamental to the data, or are they just a quirk of the specific pre-training
algorithm/network?

To test this, we repeat the real world evaluation from Table 1 using the SimCLR [63] pre-training
algorithm and ResNet-18 architecture [64]. As a refresher, SimCLR is a contrastive learning algo-
rithm that optimizes a network R to “pull together” different views of the same image (i.e., two
randomly augmented versions of the same image: R(zi), R(z∗i )) and “push apart” different im-
ages from each other (R(zi), R(zj)). This is accomplished with the following loss function, where
sim(x, y) = xT y/(|x||y|):

L = −log exp(sim(R(zi), R(z∗i ))/τ)∑
i 6=j exp(sim(R(zi), R(zj))/τ)

This SimCLR pre-training scheme is applied to each of the 1M images from our target datasets,
using the same hyperparameters from the original paper [13].

We compare the newly trained representations alongside an additional ResNet-18 baseline, R3M [1],
which was also trained using contrastive learning applied to Ego4D. The results for real world tasks
are presented in Table 4. Note that the trends we found in the ViT + MAE evaluations are replicated
in these ResNet + SimCLR experiments: the vision datasets – ImageNet/Kinetics/DoH – create
stronger visuo-motor features w/ SimCLR compared to Ego4D/RoboNet! We also find that
despite additional tuning, which was not given to any other model (including trying the bigger R3M
ResNet-34/50 architectures), the R3M baseline struggles heavily on our tasks (especially stacking).
Finally, we note that the average performance of MAEs in Table 1 is stronger than the SimCLR
performance (36% v.s. 31%), which further justifies our choice of setup. It is unclear if this is
because of the pre-training scheme or architecture choice.

E ImageNet Diversity Ablations
One potential hypothesis that would explain our results is that the dataset’s diversity is critical for
effective visuo-motor pre-training. This explanation is intuitive, since information compression is
the basis of most self-supervised pre-training algorithms – e.g., MAEs [10] are based upon recon-
structing a whole image from an encoding calculated from patches of the image. Thus, a cleaner
and more diverse data distribution (like cureated ImageNet dataset) will make pre-text compression
task “harder,” which in turn could result in a stronger, more robust visuo-motor representation.

While this hypothesize is attractive, the main results in our paper are not able to eval-
uate its veracity. Thus, we’ve added an additional experiment to try and shed some
light on this theory. Specifically, we take two 500K subsets from ImageNet [2] that
have varying levels of diversity. The first, IN-500K-500C consists of 500 classes
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each with 1000 images (500K frames total). The second, IN-500K-1000C uses all
1000 ImageNet classes with 500 images sampled from each (again 500K frames total).

Task IN-500K-500C IN-500K-1000C
Stacking 70% 70%
Pouring 16% 32%
Toasting 25% 32%

Average 37% 46%

Figure 6: This table compares two rep-
resentations trained on the same num-
ber of frames from ImageNet, but with
different diversity levels (500 classes vs
1000). We find that the more diverse im-
age set results in a marginally stronger
representation.

Note that these two datasets are the same size, but the
second dataset is more diverse (2x more classes)! Thus,
if diversity is critical, we should expect the 2nd dataset to
perform better even though it’s the same size.

We evaluate these two models on our real world tasks and
present the success rates in Table. 6. Note how the more
diverse representation (IN-500K-1000C) performs better
on the Pouring and Toasting tasks (w/ equal performance
on Stacking), resulting in marginally better performance
overall (46% vs 37%). In other words, keeping all else
equal a more diverse pre-training set results in a 7%
performance boost! While this result isn’t fully defini-
tive, it is an encouraging sign in favor of the diversity
hypothesis. However, further work is needed to test this
hypothesis in more settings.
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